Introduction

Suppose that a small plane crashed upon takeoff from an airport near
Denver on July 15, 1971. We ask why the crash occurred. Our interest
in the event might be highly practical; the FAA, for instance, investi-
gates such accidents in order to improve flying safety. When we know
why occurrences of various types happen, we can often do something
about controlling them. At the same time, our interests might be largely
theoretical. To someone concerned with aerodynamics, the search for an
explanation of the crash might be the result of sheer intellectual curios-
ity. In either case—these two motives are not mutually exclusive—we
look to science for an explanation of the event; the explanation may be
both practically useful and intellectually satisfying. Whether we pursue
scientific investigations for the purpose of predicting and controlling our
environment or for the sake of understanding the world in which we
live, the search for explanations is at the heart of the endeavor.

As the inquiry gets underway, the investigators will establish a num-
ber of relevant facts, such as the type of aircraft involved, its mechanical
condition, the load it was carrying, the length of the runway, and the
height and location of the obstacle. In addition, they will take into ac-
count such relevant meteorological circumstances as the wind velocity,
the atmospheric pressure, the temperature, and the relative humidity.
Given all of these conditions, the investigators can determine the dis-
tance needed for takeoff to clear the offending barrier. Having ascer-
tained that the wind was calm and having ruled out such causes as
mechanical failure, they find that the atmospheric pressure was low
(due to the high altitude of the airport) and that the day was hot and
humid. Since the distance required for takeoff depends upon the density
of the air—the smaller the density the greater the distance needed—
and since density decreases as altitude, temperature, and humidity are
increased, the conditions at the time and place of the accident resulted
in an abnormally long takeoff distance. Under these circumstances the
runway simply was not long enough. The pilot made the fatal error of
failing to take these factors into account.

3
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4 : Introduction

This example illustrates several important features of scientific ex-
planation. We have a particular event—the crash of the airplane—for
which an explanation is sought; it is known as the explanandum (that
which is to be explained).* It is explained by invoking general laws—
for example, that there is an inverse relation between the density of the
air and the distance needed for takeoff—under which the explanandum
can be subsumed. The explanandum is brought under the general laws
by establishing such initial conditions as air temperature, atmospheric
pressure, relative humidity, wind velocity, type of aircraft, and height
and location of the obstacle. The general laws and the initial conditions
together constitute the explanans (that which does the explaining). The
explanatory facts which make up the explanans thus consist of particu-
lar facts—embodied in the initial conditions—and general facts—em-
bodied in the general laws. In order to explain a particular occurrence,
both types of facts are essential. The fact that the relative humidity
was high on the day of the crash will not help to explain the crash
unless we have a general law relating humidity to air density. Similarly,
the general relationship between humidity and density is useless with-
out the particular value of the humidity at the place and time of the
crash, which is required to bring the generalization to bear on that
particular occurrence. General laws are needed to relate particular ex-
planatory facts to the explanandum; particular facts are needed to make
the general laws applicable to the explanandum. For obvious reasons,
explanations that conform to this pattern are called covering-law ex-
planations, and the pattern itself is known as the covering-law model of
explanation.

We have not, of course, offered a full explanation of the crash; in
order to do so, it would be necessary to fill in many details that we have
only sketched. Even if such details had been furnished, thereby pro-
viding a complete explanation of the crash, it might still seem reasonable
to ask for explanations of one or more parts of the explanans. This does
not mean that the explanation of the crash is incomplete, but only that
there are other explanations that might be in order. For example, it may
be fairly evident why air is less dense at greater altitudes than at lesser
ones, but perhaps it is puzzling that humid air is less dense than dry
air. This general fact can be explained by noting that, at specified values
of pressure and temperature, a particular volume of gas contains ap-
proximately the same number of molecules regardless of the kinds of
molecules composing it (Avogadro’s law). Dry air contains mostly nitro-
gen (N:) and oxygen (O:) molecules, whereas humid air contains a
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significant proportion of water (H20) molecules. The molecular weights
of N and O; are 28 and 32 respectively, whereas the molecular weight
of water vapor is 18. Although a wet washcloth is obviously much heavier
than a dry one, a given volume of humid air is less massive, and hence
less dense, than the same volume of dry air (at the same pressure and
temperature).

We see, then, that general laws, as well as particular facts, are amena-
ble to scientific explanation, and that the general law is explained by
subsuming it under still broader laws. Thus, the general relation between
the density of moist and dry air is explained in terms of still more general
laws relating the density of a gas to its molecular composition. In this
book we shall be concerned mainly with explanations of particular events
rather than general laws, but it is important to remember that the gen-
eral laws employed in such explanations are, themselves, capable of
being explained by means of covering-law explanations.

In the context of aeronautical engineering, it is appropriate to regard
the laws of physics as strict universal generalizations that hold without
exception. Thus, the Bemoulli principle, which determines the lift of a
wing, can be taken as an unexceptionable law relating the velocity of
flow of a fluid (liquid or gas) to the pressure it exerts in a direction
perpendicular to the direction of flow. From a more precise and theoreti-
cal standpoint, however, we must regard such laws as statistical gen-
eralizations that admit of overwhelmingly improbable exceptions. Ac-
cording to this more refined conception, the performance of an airplane
attempting a takeoff is determined by the average behavior of exceed-
ingly large numbers of molecules that collide with the propeller, wings,
control surfaces, and other parts of the craft. If, for instance, an extremely
large number of molecules of air near the obstacle, in the course of their
purely random motions, had chanced to be moving upward at just the
proper moment, they could have lifted the airplane over the obstacle,
thus avoiding the accident. Such phenomena are actually observed for
microscopic particles in Brownian motion, but for an object the size of
an airplane such an occurrence is so incredibly improbable that for all
practical purposes we can ignore its possibility. An occurrence of this
type would be analogous to Jeffrey’s example of a tire inflating spontane-
ously ?

The fact that certain laws are statistical in character, rather than
strictly universal, obviously does not preclude their use in scientific ex-
planations. If we ask why a particular ice cube melted, it would be ade-
quate to point out that it was placed in lukewarm water and that an
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6 : Introduction

ice cube in these circumstances will very, very probably absorb heat
from the surrounding water. It is not physically impossible, however,
for the ice cube to give up some of its heat to the water, increasing
rather than decreasing the temperature difference between them. Simi-
larly, in strictest rigor the FAA investigators ought to say that an air-
plane of specified characteristics will very probably follow a particular
flight path under particular meteorological conditions. This probabilistic
construal of the explanation does not deprive it of its explanatory power.
It is still a covering-law type of explanation, but the law is statistical
rather than universal®

It is evident from the foregoing remarks that statistical generaliza-
tions can be explained in much the same fashion as universal generaliza-
tions, namely, by subsumption under broader generalizations. Thus, for
instance, the fact that two bodies of unequal temperature will probably
exchange heat when brought into thermal contact, the warmer losing
heat to the cooler until a uniform temperature is attained throughout, is
explained by statistical generalizations concerning the exchange of kinetic
energy among colliding molecules. In similar fashion, an explanation of
the Bernoulli principle as a statistical generalization can also be grounded
in the theory of the statistical behavior of gas molecules, inasmuch as
pressure exerted on an airfoil by a gas is understood in terms of the
averages of vast numbers of collisions of gas molecules with the surface.

The covering-law model of explanation demands, as we have seen,
that every explanans contain at least one general law. The laws invoked
in the explanation may be either universal or statistical generalizations.
Whichever type of law is employed in the explanans, there seems to be a
hierarchy of explanations, beginning at the lowest level with explana-
tions of particular events and progressing upward through explanations
of general laws of greater and greater scope. In fact, it has often been
suggested that particular observable events, such as the airplane crash,
can be explained through the use of empirical laws, whereas empirical
laws are in turn explained by means of theories. This distinction between
empirical laws and theories depends upon a rough distinction between
observables and unobservables. An empirical law embodies general re-
lations among more or less directly observable things and their more or
less directly observable properties, whereas theories make reference to
unobservables. Airplanes, runways, cylinders of air, and barometers, for
instance, are observable entities, whereas molecules of nitrogen and oxy-
gen are not. Likewise, the atmospheric pressure, the weight of an air-
plane, the wind velocity, and the length of the runway are observable

© 1970 University of Pittsburgh Press. All rights reserved.



Introduction : 7

properties of observable things, whereas the number of molecules in a
container of gas and the kinetic energy of a single molecule are not.
Consequently, the inverse relation between relative humidity and takeoff
distance is an empirical law which can be used to explain a particular
event, the airplane crash, but the generalizations which involve weights
of individual molecules and numbers of molecules in a given volume of
gas are highly theoretical in character. It was by means of such theoreti-
cal laws that we explained the foregoing empirical law, and this seems
typical of the way in which empirical laws are theoretically explained.
Theoretical laws, themselves, are often explained in terms of more gen-
eral and fundamental theories. In this book we shall confine attention
chiefly to the explanations of particular events which stand at the bot-
tom of the hierarchy. Once the explanations of the lowest level are under-
stood, we can perhaps hope to move upward and cope with higher-level
explanations.

Although the foregoing examples illustrate much of what is involved
in scientific explanations, there remains the surprisingly difficult philo-
sophical task of providing a general characterization of the logical struc-
ture of scientific explanation. This is an ancient problem; as Jeffrey points
out in his essay, it goes back at least to Aristotle. Nevertheless, it has been
the object of vigorous and fruitful investigation for the past quarter cen-
tury, due largely to the work of Carl G. Hempel. Beginning with a classic
article in 1948, Hempel has elaborated a remarkably appealing and ad-
mirably precise theory of the nature of scientific explanation.* Although
Hempel's account has not been universally accepted by philosophers of
science, it has been extremely influential, and it constitutes the closest
thing we have to a received view. An extensive literature has grown up
around it. For these reasons Hempel's account serves as the very best
point of departure for any contemporary discussion of scientific explana-
tion.

Hempel has advanced two basic models of scientific explanation of
particular events. The first is the so-called deductive-nomological (D-N)
pattern; its explanans consists of universal laws and initial conditions,
from which the occurrence of the explanandum follows deductively. The
deductive-nomological explanation is a valid deductive argument; the
statements asserting the initial conditions and universal laws of the ex-
planans are the premises, and the assertion of the explanandum is the
conclusion. The second is the so-called inductive-statistical (I-S) pat-
tern. The general law in this type of explanation is a statistical generali-
zation, and the explanation is an inductive argument. The statements of

© 1970 University of Pittsburgh Press. All rights reserved.



8 : Introduction

initial conditions and statistical laws in the explanans do not necessitate
the explanandum, but they do confer high inductive probability upon
it. Harking back to our example of the airplane crash for illustration, we
can see that it would be possible in principle, though enormously com-
plicated in fact, to construct a valid deduction of the occurrence from
strictly universal laws and sufficiently detailed specifications of initial
conditions. If, however, we decide for the sake of greater rigor to treat
the laws of aerodynamics as statistical generalizations, we could pre-
sumably construct an inductive argument according to which the crash
was overwhelmingly probable. The logical details of these two models
of scientific explanation are presented, along with simple examples of
their application, in section 1 of my essay, “Statistical Explanation.” For
the moment, it is sufficient to observe that explanations of each type are
arguments, deductive or inductive, showing that the event to be ex-
plained—the explanandum—was to be expected by virtue of the ex-
planatory facts set forth in the explanans.

Deductive validity is an all-or-nothing affair; deductive .arguments
are either valid or invalid, and there are no degrees of validity. Induc-
tive support, by contrast, does admit of degrees. The premises of an in-
ductive argument may lend more or less weight to the conclusion, and
one may speak of degrees of strength of inductive inferences. According
to Hempel's view, an inductive-statistical explanation, therefore, has a
degree of strength which he designates as the inductive probability con-
ferred upon the explanandum by the explanans.

Deductive logic is a highly developed discipline, and any questions
about deductive validity that are likely to arise in the course of the dis-
cussion of scientific explanation can be settled rather straightforwardly.
Inductive logic, by contrast, is in a rather primitive state of develop-
ment, and many fundamental problems about inductive-statistical ex-
planation cannot easily be settled by referring to a canonical system of
inductive logic. If, for example, we were to ask for further elucidation
of the concept of inductive probability, it would be reasonable to go to
Rudolf Carnap’s theory of confirmation, the most rigorous and extensive
system of inductive probability available at present.” When we look at
Carnap’s inductive logic, we discover a shocking fact: in that system
of inductive logic (the one to which Hempel explicitly refers in connec-
tion with the concept of inductive probability), there is no such thing
as inductive inference in the sense required for Hempels account of
inductive-statistical explanation! In Carnap’s inductive logic there are no
inductive arguments consisting of premises and conclusion, which allow
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you to affirm the conclusion (with some degree of probability) if you
are prepared to assert the premises. On this view, inductive logic is
strongly disanalogous to deductive logic, even to the extent of proscrib-
ing inference entirely.

This is not the place to go into Carnap’s reasons for denying the possi-
bility of inductive inferences or to argue the merit of his arguments. Nor
do I mean to suggest that Carnap’s system of inductive logic is the only
possible one. But an important heuristic point is in order. Since Carnap’s
account of inductive probability is the most prominent and best-devel-
oped theory available, there does seem to be good reason to wonder
whether statistical explanations are arguments at all. This is precisely
the revolutionary move made by Jeffrey in his essay, “Statistical Ex-
planation vs. Statistical Inference,” and it is the first step in developing
an alternative to Hempel's models. Jeffrey concludes, roughly speaking,
that the statistical explanation of an event exhibits that event as the
result of a stochastic process from which such events arise with some
probability whose degree may be high, middling, or even very low. Ex-
hibition of such a process does not constitute an argument at all, let
alone an argument to the effect that the explanandum was to be expected
by virtue of its high probability.

If we take seriously the suggestion that some events have low proba-
bilities, a further reason emerges for advancing the alternative to
Hempel's theory of explanation. Were we to insist, with Hempel, that
a statistical explanation must embody a high probability, then events
that are intrinsically improbable, even though they sometimes occur,
would consequently defy all explanation. For example, in the light of
current physical theory, the spontaneous radioactive decay of a uranium
atom may be due to an alpha particle tunneling through the potential
barrier of the nucleus. As the alpha particle bombards this nuclear wall,
there is a probability of the order of 107 that it will escape, and there
are no further relevant factors to determine in which instance it tunnels
out. On Hempel's view such low probability events are in principle in-
capable of being explained, but on the alternative account quantum
mechanics provides an explanation by furnishing all of the facts relevant
to their occurrence.

There is, of course, a very strong temptation to maintain that there
must be some reason why the alpha particle gets through on one occa-
sion, when it fails on so many others, but the reasons are not known at
present. This view involves an a priori commitment to determinism—
that is, to the doctrine that every event that happens is completely de-
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10 : Introduction

termined by previous causes. On this view our reliance upon probabilities
is simply a reflection of our ignorance; further investigation will reveal
the unknown causes and enable us to give a full (deductive-nomologi-
cal) explanation of the event in question. This position seems to me un-
tenable. I do not mean to argue that present physical theory is complete
and correct but, rather, that there is no reason to make an a priori deci-
sion as to the nature of further physical theories. Perhaps, in the future,
improved theories will provide a deterministic account of events that
current theory regards as causally undetermined—but perhaps they will
not. We should be prepared for the possibility that the indeterministic
character of physical theory is correct and that there are events which
are intrinisically improbable, not merely improbable in relation to our
present incomplete knowledge. In that case, we need an account of sta-
tistical explanation that will characterize the explanation of events in
terms of statistical laws. It seems desirable for a theory of explanation
to admit the possibility of events that are intrinsically undetermined,
indeed, events whose intrinsic probabilities are low, without denying the
possibility of explaining them. To deny that any events are undeter-
mined seems to involve an unwarranted a priori commitment to deter-
minism; to say that only events with high probability can be explained
involves, among other disadvantages, the acute embarrassment of trying
to say in some nonarbitrary way how high is high enough.

Jeffrey, Greeno, and I all agree that statistical explanations need not
be regarded as inductive arguments, and we agree that a high probabil-
ity is not required for a correct statistical explanation. If high probabil-
ity is not the desideratum, what can we offer as a substitute? The answer
is statistical relevance. This is the view I have tired to elaborate in detail
in my essay “Statistical Explanation.” To see why statistical relevance is
the key concept, consider the case of a person who experiences relief
from a neurotic symptom while (or shortly after) undergoing psycho-
therapy. Does the psychotherapeutic treatment explain the remission of
the symptom? The answer to this question depends not only upon the
probability of the abatement of symptoms during (or shortly after)
therapy; rather, it depends upon the relation between the remission rate
for patients undergoing a particular type of treatment and the spontane-
ous-remission rate. Even if the probability of the remission of symptoms
for patients in psychotherapy were very high, that would have no ex-
planatory value if the spontaneous-remission rate were equally high. At
the same time, even if the recovery rate for patients were quite low, but
still higher than the spontaneous-remission rate, the fact that the indi-
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vidual had submitted to treatment would have some explanatory force
in relation to his psychic improvement.

To say that a certain factor is statistically relevant to the occurrence of
an event means, roughly, that it makes a difference to the probability of
that occurrence—that is, the probability of the event is different in the
presence of that factor than in its absence. This relation of statistical
relevance, and its importance to the concept of statistical explanation,
is illustrated by a recent development. In my essay, “Statistical Explana-
tion,” I introduced as an example the use of vitamin C as a cure for- the
common cold. At that time I was unaware of Dr. Linus Pauling’s views
on the efficacy of vitamin C for that purpose, and I quoted what then
seemed fairly reliable evidence that the use of vitamin C is statistically
irrelevant to recovery from a cold.® If Dr. Pauling is right, the use of
vitamin C is relevant to recovery, and my previous factual information
was incorrect. Clearly, however, the vital question is not “How proba-
ble is recovery from a cold if one takes sufficient vitamin C?” but rather
“How does the probability for recovery differ between users and non-
users of vitamin C?”

The foregoing considerations allow us to distinguish quite succinctly
between Hempel’s view and the alternative. Let us dub the alternative
account “the statistical-relevance model” or “S-R model” for short. The
term “inductive” is deliberately omitted from the title to emphasize that
S-R explanations are not arguments or inferences of any sort. The two
models can be characterized as follows:

I-S model (Hempel): an explanation is an argument that renders
the explanandum highly probable.

S-R model (Jeffrey, Salmon, Greeno): an explanation is an assembly
of facts statistically relevant to the explanandum, regardless of
the degree of probability that results.

It is evident that an explanation can satisfy Hempel's high-probability
requirement without satisfying the relevance requirement and that the
relevance requirement can be fulfilled in the absence of high probabil-
ity. The fact that high probability is neither necessary nor sufficient for
statistical relevance indicates that the difference between Hempels I-S
model and our S-R model is fundamental. In my essay I attempt to ex-
plain in detail how one goes about assembling sets of conditions relevant
to the occurrence of an event—indeed, even complete sets of relevant
conditions—and to offer further justification for characterizing sta-
tistical explanantion in that way. Furthermore, I offer counterexamples—
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such as the man who takes birth control pills and avoids becoming preg-
nant—to show that even deductive-nomological explanations can fail on
account of lack of relevance. Richter’s excellent drawing which serves as
a frontispiece illustrates the same point. We are led to the suggestion that
explanations embodying universal generalizations are simply a limiting
case of S-R explanation, subject to the same kinds of relevance require-
ments.

When we look at the airplane crash from the standpoint of relevance,
we may start by asking why a brand X airplane in good mechanical
condition carrying a reasonable load should fail to clear an obstacle when
similar craft with similar loads had often taken off successfully from
runways no longer than this one. Whether we are construing the laws
as universal or statistical, we want to find relevant conditions to account
for the crash. The answer, we find, is the air density at the time and
place of the crash. It appears that the pilot had made the all-too-common
error of forgetting the relevance of altitude, temperature, and humidity
to the distance required for takeoff.

Having argued rather adamantly that events with low probabilities
are amenable to scientific explanation, I must confess to a feeling of
queasiness in saying that an event is explained when we have shown
that according to all relevant factors, its occurrence is overwhelmingly
improbable. I am somewhat inclined to attribute this feeling to intui-
tions that have been well nurtured on more than two decades of exposure
to Hempel’s very persuasive writings, and to say that we simply have to
retrain our intuitions. Greeno has a different, and I suspect better, way
of handling this matter. Given that a theory (i.e., a collection of statisti-
cal laws) has to explain the occurrence and nonoocurrence of many dif-
ferent types of events, and that factors relevant to the nonoccurrence
of the event seem to have a place in the explanation,” Greeno suggests
that we evaluate the overall explanatory power of a theory tc explain all
of the kinds of events it purports to explain, rather than attempting to
evaluate the goodness of a particular explanation of a particular event.
One of the attractive features of Greeno’s essay, “Explanation and In-
formation,” is that it provides an appealing method of assessing at least
one aspect of the explanatory value of a theory. This result is achieved
by application of some concepts of information theory.

When we ask what good it is to have an S-R explanation, it is satis-
fying to be able to say that the invocation of an explanation increases
our information. Indeed, information theory even provides a quantita-
tive measure of the amount of increase. Perhaps there are other desid-
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erata for explanatory theories, but increase of information is a nice one.
Looking at the measure in some detail, we shall see that the addition of
information accrues as a result of the fact that the explanation provides
appropriate relevance relations.

Consider a simple example. Suppose that the population of Center-
ville, US.A,, is equally divided between Democrats and Republicans.
Let us call the partition of the population in terms of political affiliation
{M} (to be thought of as explanandum), and let

M, = D; M, = R; where {M} = {D, R}.
According to our assumption,

m = P(M,) = P(D) = )3;

p: = P(M:) = P(R) = }4.
This partition involves the greatest possible degree of uncertainty for a
partition into two subclasses, for knowing that a person is a resident of
Centerville tells us nothing about whether he is a Republican or a Demo-
crat. In information theory this uncertainty is measured by

HM) = Z —pilogsp: = 1,

where it is sometimes called, with enormous potentiality for confusion,
the “information.” ® The bifurcation into two equally probable subsets
provides the unit of uncertainty (or information) known as the “bit.”
Notice that the uncertainty achieves its maximum value of 1 when p; =
pe, and it drops to its minimum of zero when either p; or p. assumes
the value of 1. If all residents of Centerville were Republicans, there
would be no uncertainty whatever about their party affiliation.

Now suppose, moreover, that. Centerville is split by a set of railroad
tracks that run north to south through the town, so that half of the resi-
dents live to the east and half live to the west of the tracks. Here we
have another partition; let us call it {S} (to be thought of as explanans),
and let

Sy = E; S, = W, where {S} = {E, W}.
According to our second assumption
p1 = P(8) = P(E) = 13;
p's = P(S;) = P(W) = 15.
Again, the uncertainty is maximal for such a partition:

H(S) = 1.
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The aggregate uncertainty of the two partitions is their sum,
H(M) + H(S) = 2.

The important question about these two partitions concerns their mu-
tual independence. Let us call the unconditional probabilities P(S;) and
P(M;) given above the “marginal probabilities.” Let us then introduce
the conditional probabilities P(M,,S;) = p;; from the members of the
partition {S} to the members of the partition {M}.° By definition, the
partition {M} is independent of the partition {S} if the conditional prob-
abilities are equal to the respective marginal probabilities:

P(M;, S;) = P(M;) or ps; = p;foreveryz,j.

Intuitively we want to say that the conditional probabilities contribute
no further information if the two partitions are statistically independent
of one another, but that they can contribute positive information (re-
duction of uncertainty) if there is a statistical dependency between
them. The general idea is this: if the probability of being a Democrat
varies, depending upon the side of the tracks on which the resident
lives, then knowledge of his place of residence reduces the uncertainty
about his party affiliation. If, however, P(D,E) = P(D,W) = P(D),
then knowledge of place of residence does not provide any information
relevant to party affiliation.

In information theory, the quantitative measure of reduction of un-

certainty—that is, the “information transmitted” by the theory T—is
given by

Ir = HM) + H(S) — H(S X M)

HS X M) = Z Z —DiPiilog:pipi;.
i 7

As Greeno shows,

where

H(S X M) = HM) + H(S)

whenever the conditional probabilities equal the corresponding margi-
nal probabilities (i.e., p; = p;). Thus, if the partitions are independent,
the reduction in uncertainty, or the increase of information, is zero.
This, of course agrees with our intuitions. It also means that a partition
{S} that is statistically irrelevant to a partition {M} cannot have any
explanatory value with respect to it.

Suppose, however, that the two partitions are not independent and
that place of residence is relevant to party affiliation. In particular, let
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us say that 3/4 of the people to the east of the tracks are Democrats,
whereas 3/4 of those on the west side are Republicans:

P(D, E) = P(M,, 8)) = pu = ¥;

P(R,E) = P(M,, S;) = p1a = 14;

P(D, W) = P(My, S2) = pa = Y;

P(R, W) = P(MQ, Sz) = P22 = A
Then,

H(S X M) = —2(3% logs 34 + 14 log, 1g) ~ 1.81
and

Iy ~0.19.

This quantity represents our increase of information by virtue of the
conditional probabilities.

Greeno shows that the increase in information is maximal when all of
the conditional probabilities are either zero or one. This corresponds to
the situation in which deductive-nomological explanation is possible. If,
however, the marginal probabilities in the original explanandum parti-
tion are also either zero or one, that maximum represents no gain in
information. This situation corresponds to the case in which deductive-
nomological explanation becomes vacuous through failure of relevance
conditions, as in the example of the man who takes birth control pills.
These considerations show quite clearly that the measure of explana-
tory value introduced by Greeno is a statistical-relevance measure. An
explanatory theory can, on his view, have explanatory value even though
it assigns low probabilities to explanandum events, and it may fail to
have explanatory value even if it assigns high probabilities to explana-
dum events.

In my essay, “Statistical Explanation” (section 6), I approach the in-
crease in information resulting from a relevant partition in a different
way. Suppose we select a particular resident of Centerville, and ask for
the probability that he is a Democrat. We would be ill-advised to accept
the value 1/2—say as the basis for a 50-50 bet— because the reference
class of residents is not homogeneous with respect to party affiliation.
We should look instead at his residence; if he lives on the east side of
the tracks, assign the value 3/4, and if he lives on the west side, the
value should be 1/4. Let us look at the matter quantitatively by associat-
ing the (true) value 1 with each Democrat and the (true) value o with
each Republican. If we assign the value 1/2 to each person, the error
(deviation from the “true” value) in each case is * 1/2, and (squaring
to make everything positive) the squared error is 1/4 for each individ-
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ual. Obviously, the mean-squared error for all N residents is 1/4. Sup-
pose, instead, that we assign the value 3/4 to each resident east of the
tracks, and the value 1/4 to each resident of the west side. The number
of residents on each side is N/2; 3/4 X N/2 of the east siders are Demo-
crats, while 1/4 X N/2 are Republicans. The converse situation obtains
on the west side. If we assign the value 3/4 to someone who is a Demo-
crat, the error is 1/4 and the squared error is 1/16. If we assign the value
3/4 to a Republican, the error is 3/4, and the squared error is g/16. The
cumulative squared error for all residents of the east side is

3/4 X N/2 X 1/16 + 1/4 X N/2 X g/16 = 12N /128.

The same cumulative squared error occurs if we assign the value 1/4
to each west-sider. The total cumulative squared error is 24N/128, and
the mean-squared error is 3/16, which is less than 1/4, the mean-squared
error that results from ignoring the relevant partition in terms of place
of residence. We see once more how the increase in information due to
a relevant partition of the reference class translates into a numerical
measure—in this case, one that is rather obviously related to predictive
success.

Greeno has chosen to explicate S-R explanation in terms of informa-
tion transmitted, whereas I have chosen to explicate it in terms of the
homogeneity of the reference class. As we have seen, each approach
leads to a quantitative measure, as well as a qualitative characterization.
Qualitatively, the explications seem to coincide, for they agree that the
essence of explanation is in the relevance relations expressed by the con-
ditional probabilities that relate the explanans partition to the explanan-
dum partition. Both of these treatments provide a straightforward answer
to a previously recalcitrant problem concerning the utility of scien-
‘tific explanations. On the present view some of the values of an S-R
explanation are the increase of information, the decrease in uncertainty,
and the increase in predictive success provided by genuine explanations.
For starters, they seem to supply a reasonable motivation for looking
more closely at the structure of S-R explanation.

NOTES

1. For the moment I am being deliberately ambiguous about the nature of the
explanandum—whether it is the event or the statement that the event occurs.
This technicality will be treated herein in sec. 1 of my essay “Statistical Ex-
planation.” Similar remarks apply to the explanans.
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