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Chapter 1

Five Models of Science, 
Illustrating How Selection 

Shapes Methods

Paul E. Smaldino

“The good thing about science is that it’s true whether or not you be-
lieve it.” This oft-repeated quote, attributed to the astrophysicist and 
TV presenter Neil deGrasse Tyson, was seen everywhere at the March 
for Science, a set of gatherings held around the world on April 22, 2017. 
The quote has become a rallying cry for supporters of science—and of 
the application of scientific knowledge in daily life—against widespread 
science denialism. And of course, science should be defended. Carl 
Sagan, Tyson’s predecessor as host of Cosmos, noted that science not 
only increases our knowledge of the world but also serves as a bulwark 
against superstition and charlatanry (Sagan 1996). However, there is 
a counterpoint to Tyson’s claim. Plenty of science, or at least scientific 
results, are not true.

During the first decade of the twenty-first century, the biotech com-
pany Amgen attempted to confirm the results of fifty-three published 
oncology papers deemed “landmark” studies. Of these, they claim to 
have successfully replicated only six (Begley and Ellis 2012).1 In 2015, a 
team of 270 researchers calling themselves the Open Science Collabo-
ration repeated one hundred studies from published psychology papers. 
Of these, they successfully replicated only thirty-nine results (Open Sci-
ence Collaboration 2015). In 2016, neuroscientists discovered design er-
rors in the most popular statistical packages used to analyze fMRI data, 
indicating that as many as 70% of the results obtained using these pack-
ages may be false positives (Eklund, Nichols, and Knutsson 2016). And 
in 2018, a team of social scientists targeted twenty high-profile studies 
published in the prestigious journals Science and Nature and successfully 
replicated only twelve; even among these, most of the effects turned out 
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to be smaller than originally published (Camerer et al. 2018). Indeed, a 
survey conducted by Nature in 2016 revealed that a large proportion of 
empirical scientists, hailing from fields as diverse as chemistry, biology, 
physics, earth sciences, and medicine, had failed to replicate other re-
searchers’ results (Baker 2016).

This is a problem. Our understanding of the world relies on facts. 
Charles Darwin understood the perniciousness of false facts, writing 
in The Descent of Man, “False facts are highly injurious to the progress 
of science, for they often endure long; but false views, if supported by 
some evidence, do little harm, for every one takes a salutary pleasure in 
proving their falseness; and when this is done, one path towards error 
is closed and the road to truth is often at the same time opened” (1871, 
385). What he is saying in his overwrought Victorian prose is that we 
shouldn’t worry too much about false theories, because academics are 
competitive and love to take each other down a peg by demonstrating 
logical inconsistencies in one another’s theories. Since logic is a com-
mon language in science, the competition for theoretical explanations 
remains relatively healthy. However, any coherent explanation must rely 
on a firm foundation of facts. If our facts are false, we end up wasting our 
time arguing about how best to explain something that isn’t even true.

Science involves both theory building and fact finding. This chapter 
focuses on the fact-finding aspect, and as a shorthand the search for 
facts is what I will mean henceforth by the term “science.” In this sense, 
science can be viewed as a process of signal detection for facts. We wish 
to discover true associations between variables. However, our methods 
for measurement are imprecise. We sometimes mistake noise for signal 
and vice versa.

How we conceptualize the scientific enterprise shapes how we go 
about the business of conducting research, as well as how we strive to 
improve scientific practices. In this chapter, I’ll present several models 
of science. I’ll begin by showing ways in which the classic “hypothesis 
testing” model of science is misleading and leads to flawed inferences. 
As a remedy, I’ll discuss models that treat science as a population pro-
cess, with important dynamics at the group level that trickle down to 
the individual practitioners. Science that is robust and reproducible de-
pends on understanding these dynamics so that institutional programs 
for improvement can specifically target them.

A First Model of Science: Hypothesis Testing

Early in our schooling, many of us are taught a simple and somewhat 
naive model of science as “hypothesis testing” (figure 1.1). The scien-
tist comes up with a hypothesis about some natural system. She cannot 
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directly infer the essential epistemic state of the hypothesis, whether it 
is true or false. Instead, she investigates the hypothesis by experimenta-
tion or other empirical means, which results in either a positive result in 
support of the hypothesis or a negative result indicating a lack of sup-
port. The alignment between her results and the epistemic state of the 
hypothesis is necessarily imprecise. There is some risk of a false positive, 
α = Pr(+|F), as well as a false negative, β = Pr(−|T ). These outcomes are 
sometimes called Type 1 and Type 2 errors, respectively.2 This uncertain-
ty forces us to ask: How confident should our scientist be in her results?

Consider the following scenario. Dr. Pants investigates one of her 
many hypotheses. Using her well-tested method, the probability that 
the test will yield a false positive result is 5%. That is, Pr(+|F) = 0.05. If 
the hypothesis is true, the probability that the test will correctly yield 
a positive result is 50%. That is, Pr(+|T ) = 0.5. The test is conducted, 
and the result is positive! Now, what is the probability that Dr. Pants’s 
hypothesis is correct?

You may be tempted to answer 95%. After all, the probability of a 
false positive is 5%, and it’s clear that 100 − 5 = 95. If this is your answer, 
you are not alone. When a version of this question was posed to students 
with scientific training, 95% was indeed the most common answer, at 
least in years past (Gigerenzer and Hoffrage 1995). Why is this wrong? 
Recall that we are looking for the probability that the hypothesis is true 
conditional on obtaining a positive result, Pr(T |+). Fortunately, we have 
a handy mathematical tool for computing exactly this sort of condition-
al probability. Using Bayes’ Theorem, we can write out our conditional 
probability as follows:

1.1. A first model of science. Hypotheses are investigated and results, with char-
acteristic error rates, are recorded. The real epistemic state of each hypothesis, 
true or false (T or F), is unknowable except through this sort of investigation.
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You’ll notice right away that there’s a term in this equation I haven’t 
provided: Pr(T ). This is the prior probability that any hypothesis being 
tested by Dr. Pants is true, often called the base rate. We ignore the base 
rate at our peril.

A Second Model of Science:  
Hypothesis Selection and Investigation

Imagine now that Dr. Pants tests not one but one hundred hypotheses. 
Of these, ten are true and ninety are false. If you want a more concrete 
example, imagine Dr. Pants runs a behavioral genetics lab. She is look-
ing for single nucleotide polymorphisms (SNPs) that correlate with a 
heritable behavioral disorder. She tests one hundred SNPs, of which ten 
are actually associated with the disorder. Thus, the base rate is b = 0.1. If 
this seems low, consider that for many disciplines, the base rate may ac-
tually be much lower. Every association tested, every statistical test run, 
is a hypothesis that may be supported. Dr. Pants tests her hypotheses us-
ing the method described in the previous paragraph, with α = 0.05 and β 
= 0.5. So what is the probability that a hypothesis with a positive result 
actually reflects a true hypothesis? In this case, it’s 50%, not 95% (figure 
1.2). And the lower the base rate, the lower this posterior probability 
gets. Worse yet, in reality we can never know for certain the epistemic 
states of our hypotheses, nor can we easily estimate the base rate. Our 
results are all we have.

So now we have a second model of science that includes the process 
of hypothesis selection as well as the experimental investigation of that 
hypothesis (figure 1.3).3 We can capture this model in terms of the pos-
terior probability that a positive result indicates a true hypothesis using 
the notation introduced so far:

This Bayesian model of science was introduced by Ioannidis (2005) in 
his now classic paper, “Why Most Published Research Findings Are 
False.” The analysis is straightforward. If the base rate, b, is low, then 
even a moderate false positive rate (such as 5%) will lead to a low poste-
rior probability and a large number of false positives.

One concern about this model is that it treats each hypothesis in 
isolation. It ignores the social and public aspect of science. Scientists 
don’t just produce results; they also try to publish them, and some re-
sults are easier to publish than others. Once published, results can then 
be replicated, and with new information comes the opportunity for new 
estimates of the epistemic states of the underlying hypothesis.



1.2. The importance of base rate. Left: 100 hypotheses are tested, of which 10 
are true (the base rate is b = 0.1). Right: 50% of the true hypotheses and 5% 
of the false hypotheses yield positive results, producing a posterior probability 
that a positive result is actually true of approximately Pr(T |+) = 0.5.

1.3. A second model of science. Investigation is preceded by hypothesis selec-
tion. The inner circles indicate the real epistemic value of each hypothesis. 
Black indicates false, white indicates true. The gray outer circle represents the 
fact that these epistemic values are unknown before investigation.
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A Third Model of Science:  
The Population Dynamics of Hypotheses

The first two models of science both portray a science in which each 
hypothesis is investigated in isolation. But consider what happens to 
a result once the hypothesis has been investigated. The researcher will 
sometimes decide to publish the result. I say “sometimes” because some 
results are never published, especially when they don’t support the hy-
potheses being tested. These results end up in the “file drawer” (Rosen-
thal 1979). Once published, the studies supporting a given hypothesis 
can be replicated, whether by other labs or by the one that generated the 
original result.

Our third model conceptualizes hypothesis testing as a dynamical 
system involving a large number of hypotheses being tested by a large 
number of scientists (figure 1.4). A scientist first selects a hypothesis to 
test. A novel hypothesis is true with probability b, the base rate. The 
hypothesis is investigated, producing results. These results can then be 
disseminated to the scientific community via publication. This stage is 
important, because not all results are published with equal probability. 
Novel positive results are usually the easiest to publish. Negative results 
are published at much lower rates (Fanelli 2012), possibly due to being 
rejected by journal editors but also because they are viewed as carrying 
low prestige for researchers and are therefore rarely submitted (Franco, 

1.4. A third model of science. After hypothesis selection and investigation, 
results are communicated. Some results end up published and become part of 
the literature, which can accrue through replication. This is indicated by the 
rectangle containing concentric circles. Each layer represents a positive (white) 
or negative (black) results. Results that are not published end up in file draw-
ers, unknown to the scientific community.
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Malhotra, and Simonovits 2014). Once findings are published, they can 
be replicated. The results can then be added to the literature, but only if 
they are published. As results accrue, each hypothesis is associated with a 
record of positive and/or negative results in the published literature. Be-
cause some types of results are more likely than others to be published, 
the published literature likely reflects a biased record of investigation.

This dynamical model was introduced and analyzed in an earlier pa-
per (McElreath and Smaldino 2015). Our analysis focused on the prob-
ability that a hypothesis was true, conditional on its publication record.4 
For simplicity, we operationalized the publication record as a tally of 
the net positive findings—that is, the number of positive results minus 
the number of negative results in the published literature. Although this 
conditional probability was influenced to some degree by all of the mod-
el’s parameters, we found that the two parameters exerting the largest 
influence—by far—were the base rate, b, and the false positive rate, 
α. If the base rate is high (so that most tested hypotheses are true) and 
the false positive rate is low (so that most positive results reflect true 
hypotheses), then a single positive result likely reflects a true hypothesis. 
However, as base rate decreases and false positive rate increases—to val-
ues that, I must add, I view as quite realistic for many disciplines—then 
more and more successful replications are necessary to instill the same 
amount of confidence in the truth of a hypothesis.

Above all, this indicates that replication is important for a healthy 
science (Smaldino 2015). Indeed, our analysis showed that replication 
studies are valuable even when they use designs with different meth-
odological power than the original investigations. More than that, we 
shouldn’t be surprised that some results fail to replicate. Some erroneous 
results are inevitable. When methods are imperfect, both false positives 
and false negatives may be common. That said, the model also illustrates 
that improvements to the practices and culture of science should focus 
on factors that increase the base rate of true hypotheses and lower the 
rate of false positives results, so as to decrease the number of false facts 
in the published literature.

A number of factors lead to false discovery. False facts are more com-
mon when:

Studies are underpowered, because small sample sizes tend to lead to 
false positives and ambiguous results.

Negative results aren’t published, distorting the publication record 
by eliminating disconfirmatory evidence.

Statistical techniques are misunderstood, leading to false positives 
and ambiguous results.
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Surprising results are the easiest to publish, because such results 
have a low base rate of being true, given priors to the contrary.

Although the factors in this list may be new to some readers, sci-
entists have, in general, been aware of these issues for decades. Why, 
then, isn’t science better? Understanding how scientific practice—and 
not just scientific knowledge—changes over time requires a new model 
that includes the scientists themselves in the model dynamics. Before 
introducing such a model, I’ll need to say a few words about some of the 
incentives that structure human social behavior.

A Brief Interlude on Incentives

Science is the search for truth about the natural world, for a better un-
derstanding of our universe. Scientists, however, are also human be-
ings who need steady employment and the resources to conduct their 
research. Obtaining those jobs and securing that funding is far from 
trivial these days. There are currently far more PhDs looking for em-
ployment in academia than there are permanent positions for them to 
fill. In several disciplines, including biomedicine and anthropology, the 
creation of new PhDs outpaces the creation of new faculty positions by 
a factor of five (Ghaffarzadegan et al. 2015; Speakman et al. 2018). More 
generally, the number of open faculty positions in scientific disciplines 
is only a small fraction of the number of total PhDs awarded each year 
(Cyranoski et al. 2011; Schillebeeckx, Maricque, and Lewis 2013). This 
creates a bottleneck at which selection is nonrandom. In academic sci-
ence, this selection pressure is often linked to an individual’s publication 
history, as evinced by the clichéd admonition to “publish or perish.”

Successful scientists are certainly publishing more. Since just the 
early 2000s, the number of publications at the time of hiring for new 
faculty has more than doubled in fields such as evolutionary biology 
(Brischoux and Angelier 2015) and cognitive psychology (Pennycook 
and Thompson 2018). A large study of over twenty-five thousand bio-
medical scientists showed that scientists who ended up as principal in-
vestigators (PIs) consistently published more papers and placed them 
in higher-impact journals that those researchers who ended up leaving 
academia (van Dijk et al. 2014).

It may not be immediately obvious that preferential reward for pro-
ductivity and impact factor are bad things. Indeed, it seems that we 
should want scientists to be productive and we should want their work 
to have a wide impact. Don’t we want our scientists to be awesome? 
The difficulty is that awesomeness is in reality quite complicated and 
multidimensional. The importance of research may not be manifest for 
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quite some time, and a lack of productivity can just as easily reflect 
careful study of a difficult problem as it can a lack of drive. This dif-
ficulty becomes a serious problem when awesomeness is assessed with 
crude, quantitative metrics like paper count, journal impact factor, and 
h-indices. It has been widely noted by savvy social scientists that, as 
Campbell (1976, 49) noted, “The more any quantitative social indicator 
is used for social decision-making, the more subject it will be to cor-
ruption pressures and the more apt it will be to distort and corrupt the 
social processes it is intended to monitor.” When incentives to publish 
drive scientists, science itself may become distorted.

There is evidence that scientists do, in fact, respond to incentives. In 
China, as in several other countries, PIs are often given cash rewards for 
publishing in top English-language journals. This system began in the 
early 1990s with small rewards, but the size of the rewards has grown 
tremendously. As of 2016, Chinese researchers were paid, on average, 
$984 for a paper in PLOS ONE, $3,513 for a paper in the Proceedings 
of the National Academy of Sciences, and a whopping $43,783 for a first- 
author paper in Science or Nature (Quan, Chen, and Shu 2017). Corre-
spondingly, between 2000 and 2009, Chinese submissions to the jour-
nal Science nearly quadrupled (Franzoni, Scellato, and Stephan 2011). 
China was recently declared the world’s largest producer of scientific 
papers (Tollefson 2018). Such cash-for-papers incentives can be found 
in several other countries, including India, Korea, Malaysia, Turkey, 
Venezuela, and Chile (Quan, Chen, and Shu 2017). The West is not 
immune either. For example, I recently had dinner with some American 
psychologists, who told me with pride about how much their graduate 
students published. Their program provided a cash prize of several hun-
dred dollars for the best student paper each year. When I asked how 
they assessed the best paper, they told me that a first-author publication 
in a top journal was the best indicator. “Do you read all the papers?” I 
asked. The answer was no; the journal’s reputation was deemed a suffi-
cient mark of quality. It is not hard to see how students in this program 
are incentivized not only to produce papers but to produce a particular 
type of paper.

Evidence that scientists respond to incentives can be more subtle. 
Vinkers, Tijdink, and Otte (2015) looked at relative word frequencies 
in PubMed abstracts between 1974 and 2014. They found dramatic in-
creases in the frequencies of positive, congratulatory words. Frequencies 
of the words “innovative” and “groundbreaking” had each increased 
2500%. Frequency of “novel” had increased 4000%. And frequency of 
“unprecedented” had increased 5000%. There are, of course, two pos-
sible explanations for this shift in word frequencies. The first is that 
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contemporary scientific research is actually twenty-five times more in-
novative than it was forty years ago. The other, a smidge more likely, is 
that scientists are responding to incentives to distinguish their word as 
important and pathbreaking.

A system that rewards novel, innovative results can—and does—in-
centivize cheating. Recent examples include Jan Schön in physics, Die-
derik Stapel in psychology, and Brian Wansink in nutrition science. A 
personal favorite is a case of fraud uncovered by the editors of the British 
Journal of Clinical Pharmacology. The authors of a paper claiming im-
pressive results suggested as reviewers several prominent scholars in their 
field. These scholars were contacted as reviewers, and all returned glow-
ing reviews within just a few days. One of the editors grew suspicious 
at the quick responses from the busy big-shot scientists, and contacted 
them at the email addresses listed on their university web pages. They 
were all surprised by the emails, because none of them had heard of the 
paper in question. The explanation: when the authors submitted their 
manuscript, they had provided fake email addresses for their suggested 
reviewers and submitted forged reviews of their own paper (Cohen et 
al. 2016).5

Fraud surely happens, but it’s also probably the exception rather 
than the rule. Most scientists are well-meaning people who want to 
learn about the world. The problem is that incentives for maximizing 
simple quantitative metrics, which act as proxies for more meaningful 
but multifaceted concepts like productivity and influence, can be detri-
mental even if all actors are well intentioned. To help explain why, we’ll 
turn to a new model of science that includes the scientists as well as the 
hypotheses.

A Fourth Model of Science:  
Variation, Heritability, and Selection

Science is a cultural process that, like many cultural processes, 
evolves through a Darwinian process (Richerson and Boyd 2005; Me-
soudi 2011; Smaldino 2014; Smaldino and McElreath 2016). Philoso-
phers of science including Campbell (1965), Popper (1979), and Hull 
(1988) have discussed how scientific theories evolve by variation and 
selective retention. But scientific methods can also evolve. Darwinian 
evolution requires three conditions to occur:

1. There must be variation.
2. That variation must have consequences for survival or reproduction.
3. Variation must be heritable.
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Research practices and methods certainly vary. That variation leads to 
differences in the sorts of results that are produced and, consequently, 
the publications that arise from those results. These publications have 
consequences in determining who is successful in terms of getting hired 
and promoted, securing grants, attracting graduate students and post-
docs, and placing those trainees in positions heading their own research 
groups. And variation in practice is partly heritable, in the sense that 
trainees acquire research habits and statistical procedures from mentors 
and peers. Researchers also acquire research practices from successful 
role models in their fields, even if they do not personally know them. 
Therefore, when researchers are rewarded primarily for publishing, hab-
its that promote publication are likely to be passed on.

If we want to understand how we might minimize false discoveries, 
we need a model of science that includes variation among scientists. This 
model has two phases: Science and Evolution (figure 1.5). In the Science 
phase, each research lab chooses and investigates hypotheses and tries to 
publish their results, just as in our third model of science. However, the 
methods used by each lab can differ, which affects the rate at which they 
conduct research and the probability of certain results. More specifical-
ly, consider a population of labs, all conducting research. We make the 
following assumptions:

Each lab has characteristic methodological power, Pr(+|T ).
Increasing power also increases false positives, unless effort is ex-

erted. This is because it is easy to have perfect power if every 
result is positive, but correctly eliminating the false hypotheses 
requires additional work.6

Additional effort also increases the time between results because 
each study requires more work.

Negative results are harder to publish than positive results.
Labs that publish more are more likely to have their methods “repro-

duced” in new labs.

This model was first presented and analyzed in another paper with 
Richard McElreath (Smaldino and McElreath 2016). First, we found 
that if effort is held constant and power is allowed to evolve, power 
evolves to its maximum value and the false discovery rate (the propor-
tion of published results that are incorrect) skyrockets. Everything is 
deemed “true,” and we have no information about anything. This sce-
nario is pretty unrealistic. We have fairly good ways of assessing the 
power of research methods, and no one would ever allow this to happen. 
However, effort is notoriously difficult to assess. If we hold power con-
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stant and allow effort to evolve, we find that effort reliably evolves to its 
minimum value, and once again the false discovery rate balloons. To 
reiterate, this dynamic requires no cheating or strategizing on the part 
of our agents, only that publication is a determinant of job placement. 
We have referred to this dynamical process as “the natural selection of 
bad science” (Smaldino and McElreath 2016).

What does this mean? It means that if our model of science is at least 
moderately realistic, and incentives for publishing do drive selection 
on research methods, then we should see evidence for impediments to 
the improvement of scientific methods on the timescale of generations. 
If, on the other hand, incentives are rewarding methodological rigor, 
we should see a steady increase in the quality of methods for scientific 
inquiry.

In 1967, Paul Meehl cautioned about the misuse of p-values, warning 
that scientists were wrongly interpreting their meaning and consequent-
ly generating lots of false positives (Meehl 1967). In 2016, the American 
Statistical Association published its “Statement on p-Values,” cautioning 
about their misuse and warning that scientists were wrongly interpreting 
their meaning and consequently generating lots of false positives. The 
ASA bemoaned, “Let us be clear. Nothing in the ASA statement is new. 
Statisticians and others have been sounding the alarm about these mat-
ters for decades, to little avail” (Wasserstein and Lazar 2016, 130).

In 1962, Jacob Cohen published a meta-analysis of abnormal and 
social psychology experiments, noting the frustratingly low statisti-
cal power of most published research (Cohen 1962). He cautioned 

1.5. A fourth model of science. Dynamics occur in two phases: Science and 
Evolution. In the Evolution stage, labs compete for research positions. A lab’s 
methods are represented by its shading, and its prestige is represented by its 
size. When a new position opens, it is more likely to be filled by someone using 
the methods of more prestigious labs.
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that many studies were not sufficiently powered to adequately provide 
confirming or disconfirming evidence, leading to an excess of spuri-
ous results. In the late 1980s, two studies provided new meta-analyses 
investigating whether there had been any improvement to the average 
statistical power of psychological research (Sedlmeier and Gigerenzer 
1989; Rossi 1990). They found no improvement. Recently, Richard 
McElreath and I updated those studies and confirmed that, on average, 
there was no improvement to the average statistical power in the social 
and behavioral sciences through 2011, with an average power to detect 
small effects of 0.24 (Smaldino and McElreath 2016).7 Szucs and Ioan-
nidis (2017) provided a focused study of ten thousand papers published 
in psychology, medicine, and cognitive neuroscience journals between 
2011 and 2014 and similarly found very low power in all three fields.

The natural selection of bad science appears to be pernicious. I pre-
viously noted the importance of replication for assessing the true epis-
temic value of hypotheses. Could replication similarly help to curb the 
degradation of methods? One particularly interesting, if extreme, sug-
gestion came from Rosenblatt (2016), who proposed that the authors of 
each published paper, or their host institutions, sign a contract commit-
ting them to pay a fine if their studies fail to replicate. Let me be clear: 
this is a terrible idea. As stated earlier, occasional failure to replicate is 
to some extent the price of doing business in scientific research. How-
ever, it is one of the more concrete suggestions for using replication to 
improve science. So we put it—or something like it—into the model.

Under our replication extension, all labs committed a proportion 
r of their investigations to replicating previously published results. We 
assumed that all replications were publishable regardless of the result 
and carried half of the prestige carried by a novel positive finding.8 If 
another lab replicated a finding successfully, the lab that published it 
originally got a small boost in prestige. If another lab failed to replicate 
a finding successfully, the original authors suffered a tremendous loss of 
prestige. To be honest, we thought this extreme intervention would curb 
the decline in effort and the runaway false discovery rate. In hindsight, 
it is clear why it didn’t. Although some labs did suffer a huge loss of 
prestige, the most successful labs were still those who cut corners and 
avoided being caught.

Incentive structures that push scientists to boost quantitative met-
rics like publication counts and impact factors can lead to the degra-
dation of methods. This dynamic requires no fraud or ill intent on the 
part of individual actors, only that successful individuals transmit their 
methods.9 From this, we might conclude that changing individual be-
havior—each of us improving our methods—is not sufficient to im-
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prove scientific methods; this requires institutional change. Specifically, 
it requires that the selection bottlenecks of hiring and promotion are not 
overly focused on those metrics but can instead provide a more nuanced 
assessment of researcher quality that maintains high methodological 
integrity.

Unfortunately, institutional change is far from easy. For the most 
part, institutions are not meant to change easily. They provide a stable 
framework that structures social interactions and exchanges, and ensure 
some consistency to the operation of a society in the absence of enforce-
ment by specific individuals (North 1990). This means that we run into 
trouble when our institutions are unhealthy. If we are to change the 
institutional incentives for publishing in academic science, we should 
be aware that such change will likely be slow. Is there anything else that 
can be done in the short run?

There are many efforts currently under way to improve the norms 
and institutions of academic science regarding rigor and reproducibil-
ity, often under the banner of the “Open Science” movement (Nosek, 
Spies, and Motyl 2012; Munafò et al. 2017). Some of these new norms 
include preregistration and registered reports (Nosek and Lakens 2014; 
Chambers 2017), preprints (Bourne et al. 2017; Smaldino 2017b),  
double-blind and open peer review (Mulligan, Hall, and Raphael 2013; 
Okike et al. 2016; Tomkins, Zhang, and Heavlin 2017), and better 
training in methods, statistics, and philosophy of science. At the same 
time, funding agencies are increasingly paying attention to what gets 
funded, and some have been shifting how they fund new research proj-
ects. How do these developments influence the conclusions from our 
fourth model of science?

A Fifth Model of Science: Follow the Money

Our fourth model of science makes several pessimistic—if realistic— 
assumptions about the way academic science works in our era. However, 
changes in just the last few years prompt us to challenge some of these. 
I want to focus on three specific assumptions and discuss what happens 
when we relax or alter them.

Assumption 1: Publishing negative results is difficult or confers little 
prestige. This assumption is realistic, because negative results are rarely 
published (Fanelli 2012) or even submitted (Franco, Malhotra, and Si-
monovits 2014). However, there is an increasingly large push to publish 
negative results. Many journals now accept registered reports, in which 
the research plan is peer reviewed before a study is conducted. Once 
approved, the paper’s acceptance is contingent only on adherence to the 
submitted plan and not on the character of the results (Nosek and Lak-
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ens 2014; Chambers 2017). A recent study by Allen and Mehler (2019) 
found that among studies using registered reports, 61% of results did 
not support the authors’ original hypotheses, compared to estimates of 
5%–20% of null findings in the wider literature.10 What if publication 
bias against negative results were eliminated?

Assumption 2: Publishing positive (confirmatory) results is always 
possible. This assumption ignores the corrective role of peer review in 
maintaining high-quality research. The assumption is realistic, because 
there is little evidence that peer reviewers can act as effective gatekeepers 
against false discovery. The many failed replications discussed earlier in 
this chapter testify to that. Peer review may in many cases be more about 
maintaining group norms than about weeding out error. There is wide-
spread evidence that peer reviewers can be biased toward prestigious 
individuals and institutions and against authors who are women and 
underrepresented minorities (Budden et al. 2008; Tomkins, Zhang, and 
Heavlin 2017). If peer review was reliable, we should expect consistency 
between reviewer recommendations. Instead, a number of studies have 
found low correlation between reviewer decisions on grant panels (Cole 
and Simon 1981; Marsh, Jayasinghe, and Bond 2008; Mutz, Bornmann, 
and Daniel 2012), conference proceedings (Langford and Guzdial 2015; 
Deveugele and Silverman 2017), and journal articles (Peters and Ceci 
1982; Cicchetti 1991; Nicolai, Schmal, and Schuster 2015).

Nevertheless, we increasingly see efforts to improve the conditions 
that facilitate effective peer review. Registered reports remove biases 
based on the novelty or expectedness of a study’s results (Nosek and Lak-
ens 2014; Chambers 2017). Double-blind peer review aims to reduce bi-
ases, including those based on prestige, familiarity, gender, race, or eth-
nicity (Mulligan, Hall, and Raphael 2013; Okike et al. 2016; Tomkins, 
Zhang, and Heavlin 2017). Journals increasingly require or incentivize 
open data and methods, which improves the ability of peer reviewers to 
assess results, and the increased use of repositories such as OSF (Open 
Science Framework) and GitHub has helped to facilitate this behavior. 
Open peer review and the increased use of preprint servers also allow for 
a greater number of critical eyes to read and comment on a manuscript 
before it is published (Bourne et al. 2017; Smaldino 2017b). And better 
training in statistics, logic, and best research practices—as evidenced by 
the popularity of books, massive open online courses, podcasts, sympo-
sia, and conferences on Open Science—may promote more informed 
reviews. What if peer review was effective at filtering out false discovery?

Assumption 3: Research productivity is constrained only by the ability 
to complete projects. This assumption ignores the role of funding, which 
is required for much scientific research. This assumption was justified 
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by the desire to ignore differences in access to funding and focus on 
the bottlenecks at hiring and promotion. Moreover, if one assumes that 
success in securing grant funding results from success in the quanti-
ty and prestige of one’s publications, then including explicit funders in 
the model is unnecessary. Instead, what if funders ignored publication 
records, or even focused on funding projects with the most rigorous 
methods?

The norms of hiring and promoting researchers based on simple 
metrics are entrenched in deeply rooted tradition and diffuse across 
many academic institutions; they will not be changed quickly or easily. 
In contrast, the recent changes highlighted above are occurring rapidly, 
due to greater top-down control from journals and funders. To inves-
tigate the consequences of these changes, we will once again revise our 
model of science.

We again consider a finite population of labs. Each lab has a char-
acteristic methodological rigor (or lack thereof), which is linked to the 
false positive rate of the results they obtain. In our fourth model, a lab’s 
productivity was limited only by its rigor. This time, investigating hy-
potheses requires funding. Each lab is initialized with some start-up 
funds it can use to conduct research. Once these funds are exhausted, 
additional funds must be acquired from grant agencies.

1.6. A fifth model of science. In addition to the Science and Evolution phases, 
labs also compete for grant funding, which enables them to conduct more 
research.
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To our two phases of Science and Evolution, we add a third: Grant 
Seeking (figure 1.6). In the Grant Seeking phase, some of the labs ap-
ply for funding, and the one that best matches the funding agency’s 
allocation criteria is awarded a grant. We might consider any number 
of strategies. My colleagues and I have considered those based on pub-
lication quantity, funding labs at random, and targeting those labs with 
the most rigorous methods. The Science phase looks quite similar to 
that of our previous models, having three phases—hypothesis selection, 
investigation, and communication. Here we may also take the opportu-
nity to study changes to peer review and publication bias as discussed. 
In the communication phase, positive results are always published, and 
negative results are published with probability p. Erroneous results (in 
which the result does not reflect the real epistemic state of the hypoth-
esis) are successfully blocked during peer review with probability r. The 
Evolution phase works exactly as it did in the previous model, such that 
labs with more publications are most likely to transmit their methods to 
the next generation. This is worth repeating: the selection pressure for 
publication quantity is still present. For a detailed analysis of this model, 
see Smaldino, Turner, and Contreras Kallens (2018). Here, I summarize 
our main results.

First, we can ask whether, in the absence of any contributions from 
funding agencies, curbing publication bias and improving peer review 
can promote substantial improvements to reproducible science. There is 
bad news, then good news, and then bad news again. The bad news is 
that, taken one at a time, each of these improvements must be operat-
ing at nearly maximum levels for any improvements to occur. That is, 
negative results must be published at equal rates as positive results, and 
peer reviewers must be nearly perfect in detecting false discoveries. The 
good news is that the effects of these two interventions are additive, so 
that moderate improvement to both publication bias and peer review 
can decrease the rates of false discovery to some extent. The bad news 
(again) is that this effect operates on the published literature, so that 
more published results are true, but does little to improve the quality of 
the scientists who produce that published research, at least in terms of 
methodological rigor. We still get bad scientists; it’s just that institutions 
won’t allow them to publish their worst work. This is doubly troubling 
if we then expect those same corner-cutting researchers to perform ex-
emplary peer review.

We next turned to an exploration of funding strategies. We first 
studied very simple strategies and found that a strategy of purely ran-
dom funding allocation is little better than directly funding labs based 
on publication history. We did find that if funding agencies could ef-
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fectively target those research groups using the most rigorous methods, 
the degradation of research quality can be completely mitigated. This is, 
however, a big “if.” Rigor is notoriously difficult to assess, and it is prob-
ably quite unrealistic to assume that funders could consistently and ac-
curately infer the quality of a lab’s methods. So it appears at first glance 
that random allocation is unhelpful and that funding focused on rigor 
works but is probably a pipe dream.

These results were discouraging, to say the least. However, we then 
started paying more attention to the emerging literature on modified 
funding lotteries, which incorporate aspects of funding strategies fo-
cused on both randomness and rigor. Recently, a number of scholars 
and organizations have supported a type of lottery system for allocating 
research funds (Barnett 2016; Fang and Casadevall 2016; Bishop 2018; 
Avin 2018; Gross and Bergstrom 2019), usually proposing that a base-
line threshold for quality must first be met in order to qualify projects 
for consideration in the lottery. Although rigor may be difficult to as-
sess precisely, at least some information about the integrity of a research 
lab is often available. Such lotteries may confer advantages not directly 
related to reproducibility, including (1) promoting a more efficient allo-
cation of researchers’ time (Gross and Bergstrom 2019); (2) increasing 
the funding of innovative, high-risk/high-reward research (Fang and 
Casadevall 2016; Avin 2018); and (3) reducing gender and racial bias 
in funding, as well as systemic biases arising from repeat reviewers or 
proposers coming from elite institutions (Fang and Casadevall 2016). 
Such biases can lead to cascading successes that increase the funding 
disparity between those who, through luck, have early successes and 
those who don’t (Bol, de Vaan, and van de Rijt 2018). However, the 
potential influence of modified lotteries on reproducibility had not pre-
viously been studied.

We investigated a funding strategy in which funds were awarded 
randomly to the pool of qualified applicants. Applicants were qualified 
if their methodological rigor (equivalent to the inverse of their charac-
teristic false positive rate) did not fall below a threshold. We found that 
this strategy could be extremely effective at reducing false discoveries, 
even when using fairly modest thresholds (such as restricting funding 
to labs with false positive rates below 30%). Even better, when modified 
lotteries were paired with improvements to peer review and publication 
bias, the model produced dramatic improvements to both the scientific 
literature and the scientists producing that literature. This indicates that 
funders who prioritize research integrity over innovation or productivity 
may be able to exert a positive influence over the landscape of scientific 
research above and beyond the individual labs they fund.
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Many of the interventions heralded by the Open Science move-
ment—including registered reports, preprints, open data, and the like—
have undeniable value. This model indicates that these interventions are 
likely to be insufficient to sustain the persistence of high-quality research 
methods as long as there are strong incentives for maximizing simple 
quantitative metrics like publication quantity and impact factor, which 
act as proxies for desirable but complex and multifaceted traits. On the 
other hand, the model also provides room for cautious optimism. Even 
in the face of strong selective pressures for publication at the key bottle-
necks of hiring and promotion, science may nevertheless be improved by 
countervailing pressures at other bottlenecks, such as the competition 
for funding, if they promote rigor at the cost of productivity.

Discussion

This is a chapter about how institutional incentives shape behavior in 
academic science. Methods are shaped by cultural selection for practices 
that help researchers optimize the criteria on which they are judged, 
hired, and promoted. Selection can shape practices even in the absence 
of strategic behavior to change those practices. If methods are heritable, 
selection is sufficient to be damaging. The improvements promoted by 
the Open Science movement, as well as by well-intentioned funding 
agencies, are important. The models indicate that they can do some 
good. Beyond what is captured by the models, these practices may pro-
duce normative shifts by becoming associated with prestige and by pro-
moting the informal punishment of transgressors. However, the models 
also indicate that Open Science practices are not sufficient if selection 
continues to favor easily measured evaluation metrics over more holis-
tic, multidimensional assessments of quality. This conclusion forces us 
to consider exactly what properties we want in our academic scientists.

This is also a chapter about cultural evolution. In the last few de-
cades, a new interdisciplinary field has emerged. It has provided formal 
models, increasingly backed by empirical research, of how individuals 
maintain cooperative participation (e.g., Boyd and Richerson 1992; 
Hooper, Kaplan, and Boone 2010), how they acquire and transmit 
cultural information (e.g., Henrich and Gil-White 2001; Kendal et al. 
2018), and how the population dynamics of cultural traits unfold as a 
result (e.g., Boyd and Richerson 1985, 2002; Mesoudi 2011; Turchin et 
al. 2013; Waring, Goff, and Smaldino 2017). In October 2018, the Cul-
tural Evolution Society held its second meeting in Tempe, Arizona, with 
over two hundred participants representing psychology, anthropology, 
archaeology, behavioral ecology, genetics, linguistics, economics, sociol-
ogy, engineering, and mathematics. It behooves those who are interested 
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in the science and sociology of science to pay attention to this field, 
for its primary focus is cultural stability and the dynamics of cultural 
change. It also appeared to me, as a participant, that much of the science 
presented was of unusually high quality. It is possible that, when one has 
to present work to those unfamiliar with the methodological norms of 
a small subfield, there is a strong incentive to be extraordinarily thor-
ough and transparent. Although field-specific expertise is invaluable in 
assessing research, it may also be that cross-disciplinary communication 
has an important role to play in maintaining methodologically rigorous 
research.

This is also a chapter about models. I have presented a series of five 
models, each of increasing complexity, to help us understand and ex-
plain the process and cultural phenomenon of scientific research. How 
we model science shapes our ability to identify both problems and solu-
tions. Even at their most complex, models involve drastic oversimplifi-
cation. The models I have presented focus on hypothesis testing—the 
fact-finding portion of science—and ignore the critical role of theory 
building. In these models, hypotheses are independent of one another, 
rather than interconnected. Hypotheses are formulated as clearly true or 
false, and results are formulated as unambiguously positive or negative. 
The later models characterize competition as being solely about publi-
cation, whereas network effects and research topics also drive success. 
Perhaps most importantly, the models ignore innovation and the social 
significance of results. Taken in isolation, these models represent a fairly 
crude way of thinking about science. However, the point of a model is 
not to capture all the nuances of a system. The point of a model is to be 
stupid (Smaldino 2017a). By being stupid, a model clarifies the aspects of 
the system we should be paying attention to and makes clear the aspects 
we do not include, forcing us to consider their influence on a system we 
now at least partially understand. Models are not the sum total of our 
understanding, but they can scaffold our imaginations toward a richer 
and deeper understanding of complex systems (Haldane 1964; Schank, 
May, and Joshi 2014). The models I have presented have focused on the 
factors that make positive results more or less likely to represent true 
facts. That is an important question about how science works, but it 
is far from the only question. A more complete understanding of the 
system requires many models with many perspectives and many differ-
ent stupid oversimplifications. With them we can consider, for exam-
ple, how false facts are canonized through publication bias (Nissen et 
al. 2016; Romero 2016), how funding allocation affects the efficiency 
of research effort (Avin 2018; Gross and Bergstrom 2019), how group 
loyalties and gatekeeping institutions can stifle innovative paradigms 
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(Akerlof and Michaillat 2018), how scientists select important research 
questions (Strevens 2003; Weisberg and Muldoon 2009; Thoma 2015; 
Alexander, Himmelreich, and Thompson 2015; Bergstrom, Foster, and 
Song 2016; O’Connor 2019; Zollman 2018), and how we might develop 
better theories (Stewart and Plotkin 2021).

To some extent, this is a chapter about how incentives for publica-
tion ruin everything and how those incentives have to change. However, 
it should not be taken as a story about how we academics are powerless 
in the face of the mighty incentives. It’s true that we inherit the culture 
into which we are born and develop, but it’s also true that we collective-
ly create the culture in which we participate. Collectively, we have the 
power to change that culture.


